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Repetition

Correctness concepts in concurrent systems

Extended concepts of correctness in concurrent systems:
 ¬ Termination is often not intended or even considered a failure

Safety properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ X

where QX  means that Q does always hold

Liveness properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ o
where Qo  means that Q does eventually hold (and will then stay true) 

and S is the current state of the concurrent system
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Repetition

Correctness concepts in concurrent systems

Liveness properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ o
where Qo  means that Q does eventually hold (and will then stay true) 

Examples:

• Requests need to complete eventually.

• The state of the system needs to be displayed eventually.

• No part of the system is to be delayed forever (fairness).

 Interesting liveness properties can become very hard to proof
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Liveness

Fairness
Liveness properties:

( ( ) ( , )) ( , )P I Processes I S Q I S&/ o
where Qo  means that Q does eventually hold (and will then stay true) 

Fairness (as a means to avoid starvation): Resources will be granted …

• Weak fairness: R G&?4 ?  … eventually, if a process requests continually.

• Strong fairness: R G&4? ?   … eventually, if a process requests infi nitely often.

• Linear waiting: R G&? ?  … before any other process had the same resource 
granted more than once (common fairness in distributed systems).

• First-in, fi rst-out: R G&? ?  … before any other process which applied for the same 
resource at a later point in time (common fairness in single-node systems).
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Revisiting

Correctness concepts in concurrent systems

Safety properties:
( ( ) ( , )) ( , )P I Processes I S Q I S&/ X

where QX  means that Q does always hold

Examples:

• Mutual exclusion (no resource collisions)  has been addressed

• Absence of deadlocks  to be addressed now
(and other forms of ‘silent death’ and ‘freeze’ conditions)

• Specifi ed responsiveness or free capabilities  Real-time systems
(typical in real-time / embedded systems or server applications)
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Deadlocks

Most forms of synchronization may lead to

Deadlocks
(Avoidance / prevention of deadlocks is one central safety property)

 How to predict them?

 How to fi nd them?

 How to resolve them?

 … or are there structurally dead-lock free forms of synchronization?
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Towards synchronization

process P1;
  statement X;

  wait (reserve_1);
  wait (reserve_2);
    statement Y; -- employ all resources
  signal (reserve_2);
  signal (reserve_1);

  statement Z;
end P1;

process P2;
  statement A;

  wait (reserve_2);
  wait (reserve_1);
    statement B; -- employ all resources
  signal (reserve_1);
  signal (reserve_2);

  statement C;
end P2;

Sequence of operations: A B C< < ; X Y Z< < ; , , ,X Z A B C;6 @; , , ,A C X Y Z;6 @; B YJ ;6 @

or: A X;6 @ followed by a deadlock situation.

Reserving resources in reverse order

var reserve_1, reserve_2 : semaphore := 1;
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process P1;
  statement X;

  wait (reserve_1);
  wait (reserve_2);
    statement Y;
  signal (reserve_2);
  signal (reserve_1);

  statement Z;
end P1;

process P2;
  statement A;

  wait (reserve_2);
  wait (reserve_3);
    statement B;
  signal (reserve_3);
  signal (reserve_2);

  statement C;
end P2;

process P3;
  statement K;

  wait (reserve_3);
  wait (reserve_1);
    statement L;
  signal (reserve_1);
  signal (reserve_3);

  statement M;
end P3;

Towards synchronization

Sequence of operations: A B C< < ; X Y Z< < ; K L M< < ;
                         , , , ,X Z A B C K M; ;6 @; , , , ,A C X Y Z K M; ;6 @; , , , ,A C K L M X Z; ;6 @; B Y LJ ; ;6 @

or: A X K; ;6 @ followed by a deadlock situation.

Circular dependencies

var reserve_1, reserve_2, reserve_3 : semaphore := 1;
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously.
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously.

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests).
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously.

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources.
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously.

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists, 
where every process waits for release of a resource by the next one.
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Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion: 
resources cannot be used simultaneously.

2. Hold and wait: 
a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption: 
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists, 
where every process waits for release of a resource by the next one.

 A system may become deadlocked, if all these conditions apply!
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Deadlocks

Deadlock strategies:

• Ignorance & restart
 Kill or restart unresponsive processes, power-cycle the computer, …

• Deadlock detection & recovery 
 fi nd deadlocked processes and recover the system in a coordinated way

• Deadlock avoidance 
 the resulting system state is checked before any resources are actually assigned

• Deadlock prevention 
 the system prevents deadlocks by its structure
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: 
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait:  

Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:  
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait: 
Allocation of all required resources in one request. 
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: : 

Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: 
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait: 
Allocation of all required resources in one request. 
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: 
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits: 

Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: 
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specifi c cases).

2. Break Hold and wait: 
Allocation of all required resources in one request. 
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: 
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits: 
E.g. order all resources globally and restrict processes to request resources in that order only.

Mutual exclusion
Hold and wait

No pre-emption
Circular wait
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

,RAG V E= " ,; Resource allocation graphs consist of vertices V and edges E.

V P Rj= ; Vertices V can be processes P or Resource types R.

with processes , ,P P Pn1 f= " , 
and resources types ,R R Rk1 f= " ,

E E E Ec r aj j= ; Edges E can be “claims” Ec, “requests” Er or “assignments” Ea

with claims ,E P Rc i j" f= $ .

requests ,E P Rr i j" f= $ .

and assignments ,E R Pa j i" f= $ .

Note: any resource type Rj can have more than one instance of a resource.

Rj

holds

Rj

requests

Rj

claims

Pi

Pi

Pi
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne) R1

P1 P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Two process, reverse allocation deadlock:

R1

P1 P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne) R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 No circular dependency  no deadlock:

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne) R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Two circular dependencies  deadlock:
P R P R P R P1 1 2 3 3 2 1" " " " " "

as well as: P R P R P2 3 3 2 2" " " "

Derived rule: 
If some processes are deadlocked then there 
are cycles in the resource allocation graph.

R1 R3

P1 P2 P3

R2
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Deadlocks

Edge Chasing
(for the distributed version see Chandy, Misra & Haas)

6blocking processes:
 Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

6nodes on probe reception:
 Propagate the probe to all processes holding the critical 
resources or to all requested yet unassigned resources – 
while updating the second and third entry in the probe.

7a process receiving its own probe: 
(blocked-id = targeted-id)

 Circular dependency detected.

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process – while actual requests are blocking.

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

 Assignment of resources such that 
circular dependencies are avoided:

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule: 
If some processes are deadlocked 

then there are cycles in the resource allocation graph.

 Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Reverse rule for single instances:
If there are cycles in the resource allocation graph

and there is exactly one instance per resource
then the involved processes are deadlocked.

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:
If there are cycles in the resource allocation graph

and there is exactly one instance per resource
then the involved processes are deadlocked.

 Actual deadlock identifi ed

R1

P1 P2

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Potential deadlock identifi ed

R1 R3

P1 P2 P3

R2
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Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph

and there are multiple instances per resource
then the involved processes are potentially deadlocked.

 Potential deadlock identifi ed 
– yet clearly not an actual deadlock here

R1 R3

P1 P2 P3

R2

P4



Safety & Liveness

© 2020 Uwe R. Zimmer, The Australian National University page 494 of  758  (chapter 7: “Safety & Liveness” up to page 513)

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks 
in the general case?
(multiple instances per resource)

R1 R3

P1 P2 P3

R2
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Deadlocks

Banker’s Algorithm
There are processes { , , }P P Pi n1 f!  and resource types { , , }R R Rj m1 f!  and data structures:

• Allocated [i, j]

 the number of resources of type j currently allocated to process i.
• Free [j]

 the number of currently available resources of type j.
• Claimed [i, j]

 the number of resources of type j required by process i eventually.
• Requested [i, j]

 the number of currently requested resources of type j by process i.
• Completed [i]

 boolean vector indicating processes which may complete.
• Simulated_Free [j]

 Number of available resources assuming that complete processes deallocate their resources.
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Deadlocks

Banker’s Algorithm

1. Simulated_Free % Free; 6i: Completed [i] % False;

2. While 7i: JCompleted [i] 
    and 6j: Requested [i, j] < Simulated_Free [j] do:

 6j: Simulated_Free [j] % Simulated_Free [j] + Allocated [i, j];
 Completed [i] % True;

3. If 6i: Completed [i] then the system is currently deadlock-free!
else all processes i with JCompleted [i] are involved in a deadlock!. 
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Deadlocks

Banker’s Algorithm

1. Simulated_Free % Free; 6i: Completed [i] % False;

2. While 7i: JCompleted [i] 
    and 6j: Claimed [i, j] < Simulated_Free [j] do:

 6j: Simulated_Free [j] % Simulated_Free [j] + Allocated [i, j];
 Completed [i] % True;

3. If 6i: Completed [i] then the system is safe!

A safe system is a system in which future deadlocks can be 
avoided assuming the current set of available resources.
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Deadlocks

Banker’s Algorithm
Check potential future system safety by simulating a granted request:

(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then   
   Free      := Free      - Request;   
   Claimed   := Claimed   - Request;   
   Allocated := Allocated + Request;   

   if System_is_safe (checked by e.g. Banker’s algorithm) then      

       Grant request   
   else      

        Restore former system state: (Free, Claimed, Allocated)   
   end if;
end if;
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Deadlocks

Distributed deadlock detection
Observation: Deadlock detection methods like Banker’s Algorithm are too communication 
intensive to be commonly applied in full and at high frequency in a distributed system.

 Therefore a distributed version needs to:

 Split the system into nodes of reasonable locality 
(keeping most processes close to the resources they require).

 Organize the nodes in an adequate topology (e.g. a tree).

 Check for deadlock inside nodes 
with blocked resource requests and detect/avoid local deadlock immediately.

 Exchange resource status information 
between nodes occasionally and detect global deadlocks eventually. 
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Deadlocks

Deadlock recovery

A deadlock has been detected  now what?

Breaking the circular dependencies can be done by:

 Either pre-empt an assigned resource which is part of the deadlock.

 or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)
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Deadlocks

Deadlock strategies:

• Deadlock prevention 
System prevents deadlocks by its structure or by full verifi cation

 The best approach if applicable.

• Deadlock avoidance 
System state is checked with every resource assignment.

 More generally applicable, yet computationally very expensive.

• Deadlock detection & recovery 
Detect deadlocks and break them in a ‘coordinated’ way. 

 Less computationally expensive (as lower frequent), yet usually ‘messy’.

• Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer, …

 More of a panic reaction than a method.
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Atomic & idempotent operations

Atomic operations

Definitions of atomicity: 

An operation is atomic if the processes performing it …
• (by ‘awareness’) … are not aware of the existence of any other active

process, and no other active process is aware of the activity of the 
processes during the time the processes are performing the atomic operation.

• (by communication) … do not communicate with other 
processes while the atomic operation is performed.

• (by means of states) … cannot detect any outside state change and do not 
reveal their own state changes until the atomic operation is complete.

Short: 

An atomic operation can be considered to be 
indivisible and instantaneous.
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Atomic & idempotent operations

Atomic operations

time0 5 10 15 20 25 30 35 40 45

Atomic Operations

Commitment times

5 15 1

Fl
o

w
 o

f t
as

ks

Indivisible 
phases
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Atomic & idempotent operations

Atomic operations

Important implications:

1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its 
surroundings (must keep or re-instantiate the full initial state).

3. If any part of an atomic operation fails, 
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts) 
must be prepared to declare failure 
until the fi nal global commitment.
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Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations: 

An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

• once,

• multiple times,

• infi nitely often.

Observations:

• Idempotent operations are often atomic, but do not need to be.

• Atomic operations do not need to be idempotent.

• Idempotent operations can ease the requirements for synchronization.
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Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability  ::= measure of success 
      with which a system conforms to its specifi cation.
 ::= low failure rate.

Failure ::= a deviation of a system from its specifi cation.

Error ::= the system state which leads to a failure.

Fault ::= the reason for an error.
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Reliability, failure & tolerance

Faults during different phases of design

• Inconsistent or inadequate specifi cations 
 frequent source for disastrous faults

• Software design errors
 frequent source for disastrous faults

• Component & communication system failures
 rare and mostly predictable
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Reliability, failure & tolerance

Faults in the logic domain

• Non-termination / -completion
Systems ‘frozen’ in a deadlock state, blocked for missing input, or in an infi nite loop

 Watchdog timers required to handle the failure 

• Range violations and other inconsistent states
 Run-time environment level exception handling required to handle the failure

• Value violations and other wrong results
 User-level exception handling required to handle the failure
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Reliability, failure & tolerance

Faults in the time domain

• Transient faults
 Single ‘glitches’, interference, … very hard to handle 

• Intermittent faults
 Faults of a certain regularity …  require careful analysis

• Permanent faults
 Faults which stay … the easiest to fi nd
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Reliability, failure & tolerance

Observable failure modes

R Zi Th A li N i l U i i 510 f 758 ( h 7 “S f & Li ”8

Failure modes

Time domain

fail
silent

fail
stop

fail
controlled

fail
uncontrolled

Value
error

Constraint
error

fail
never

too
early

too
late

never
(omission)

nnevev rr
(oooommimmm ssssiooonnn)n

never
(omission)

Value domain
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Reliability, failure & tolerance

Fault prevention, avoidance, removal, …

and / or

 Fault tolerance
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Reliability, failure & tolerance

Fault tolerance

• Full fault tolerance
the system continues to operate in the presence of ‘foreseeable’ error conditions ,

without any signifi cant loss of functionality or performance 
— even though this might reduce the achievable total operation time.

• Graceful degradation (fail soft)
the system continues to operate in the presence of ‘foreseeable’ error conditions, 

while accepting a partial loss of functionality or performance.

• Fail safe
the system halts and maintains its integrity.

 Full fault tolerance is not maintainable for an infi nite operation time!

 Graceful degradation might have multiple levels of reduced functionality.
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Summary

Safety & Liveness

• Liveness
• Fairness

• Safety
• Deadlock detection

• Deadlock avoidance

• Deadlock prevention

• Atomic & Idempotent operations
• Definitions & implications

• Failure modes
• Definitions, fault sources and basic fault tolerance




